Wissenschaftliche Studien „Arthrose endlich heilen“

Bitte geben Sie Ihre E-Mailadresse an, um auf den Inhalt kostenfrei zugreifen zu können.


Makrophagen Polarisierung

  1. Baek, K. W., Lee, D. I., Jeong, M. J., Kang, S. A., Choe, Y., Yoo, J. I., Yu, H. S., & Kim, J. S. (2020). Effects of lifelong spontaneous exercise on the M1/M2 macrophage polarization ratio and gene expression in adipose tissue of super-aged mice. Experimental gerontology, 141, 111091. https://doi.org/10.1016/j.exger.2020.111091
  2. Camell, C., & Smith, C. W. (2013). Dietary oleic acid increases m2 macrophages in the mesenteric adipose tissue. PloS one, 8(9), e75147. https://doi.org/10.1371/journal.pone.0075147
  3. Cheng, J., Tang, J. C., Pan, M. X., Chen, S. F., Zhao, D., Zhang, Y., Liao, H. B., Zhuang, Y., Lei, R. X., Wang, S., Liu, A. C., Chen, J., Zhang, Z. H., Li, H. T., Wan, Q., & Chen, Q. X. (2020). l-lysine confers neuroprotection by suppressing inflammatory response via microRNA-575/PTEN signaling after mouse intracerebral hemorrhage injury. Experimental neurology, 327, 113214. https://doi.org/10.1016/j.expneurol.2020.113214
  4. Choudhery M. S. (2021). Strategies to improve regenerative potential of mesenchymal stem cells. World journal of stem cells, 13(12), 1845–1862. https://doi.org/10.4252/wjsc.v13.i12.1845
  5. Gan, Z., Zhang, M., Xie, D., Wu, X., Hong, C., Fu, J., Fan, L., Wang, S., & Han, S. (2021). Glycinergic signaling in macrophages and its application in macrophage-associated diseases. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.762564
  6. Gao, S., Zhou, J., Liu, N., Wang, L., Gao, Q., Wu, Y., Zhao, Q., Liu, P., Wang, S., Liu, Y., Guo, N., Shen, Y., Wu, Y., & Yuan, Z. (2015). Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13. Journal of Molecular and Cellular Cardiology, 85, 131–139. https://doi.org/10.1016/j.yjmcc.2015.04.025
  7. Ji, J., Shu, D., Zheng, M., Wang, J., Luo, C., Wang, Y., Guo, F., Zou, X., Lv, X., Li, Y., Liu, T., & Qu, H. (2016). Microbial metabolite butyrate facilitates M2 macrophage polarization and function. Scientific reports, 6, 24838. https://doi.org/10.1038/srep24838
  8. Kaplan, M., Shur, A., & Tendler, Y. (2018). M1 Macrophages but Not M2 Macrophages Are Characterized by Upregulation of CRP Expression via Activation of NFκB: a Possible Role for Ox-LDL in Macrophage Polarization. Inflammation, 41(4), 1477–1487. https://doi.org/10.1007/s10753-018-0793-8
  9. Kawanishi, N., Yano, H., Yokogawa, Y., & Suzuki, K. (2010). Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exercise immunology review, 16, 105–118.
  10. Klauder, Julia. (2021). Makrophagenaktivierung durch Hyperinsulinämie als Auslöser eines Teufelkreises der Entzündung im Kontext des metabolischen Syndroms. 10.25932/publishup-52019.
  11. Korbecki, J., & Bajdak-Rusinek, K. (2019). The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflammation research : official journal of the European Histamine Research Society … [et al.], 68(11), 915–932. https://doi.org/10.1007/s00011-019-01273-5
  12. Liao, W. T., Hung, C. H., Liang, S. S., Yu, S., Lu, J. H., Lee, C. H., Chai, C. Y., & Yu, H. S. (2021). Anti-Inflammatory Effects Induced by Near-Infrared Light Irradiation through M2 Macrophage Polarization. The Journal of investigative dermatology, 141(8), 2056–2066.e10. https://doi.org/10.1016/j.jid.2020.11.035
  13. Lu, D., Xu, Y., Liu, Q., & Zhang, Q. (2021). Mesenchymal Stem Cell-Macrophage Crosstalk and Maintenance of Inflammatory Microenvironment Homeostasis. Frontiers in cell and developmental biology, 9, 681171. https://doi.org/10.3389/fcell.2021.681171
  14. Luque-Campos, N., Bustamante-Barrientos, F. A., Pradenas, C., García, C., Araya, M. J., Bohaud, C., Contreras-López, R., Elizondo-Vega, R., Djouad, F., Luz-Crawford, P., & Vega-Letter, A. M. (2021). The Macrophage Response Is Driven by Mesenchymal Stem Cell-Mediated Metabolic Reprogramming. Frontiers in immunology, 12, 624746. https://doi.org/10.3389/fimmu.2021.624746
  15. Meng, L., Lu, C., Wu, B., Lan, C., Mo, L., Chen, C., Wang, X., Zhang, N., Lan, L., Wang, Q., Zeng, X., Li, X., & Tang, S. (2021). Taurine Antagonizes Macrophages M1 Polarization by Mitophagy-Glycolysis Switch Blockage via Dragging SAM-PP2Ac Transmethylation. Frontiers in immunology, 12, 648913. https://doi.org/10.3389/fimmu.2021.648913
  16. Muñoz, J., Akhavan, N. S., Mullins, A. P., & Arjmandi, B. H. (2020). Macrophage polarization and osteoporosis: A Review. Nutrients, 12(10), 2999. https://doi.org/10.3390/nu12102999
  17. Mushenkova, N. V., Nikiforov, N. G., Shakhpazyan, N. K., Orekhova, V. A., Sadykhov, N. K., & Orekhov, A. N. (2022). Phenotype Diversity of Macrophages in Osteoarthritis: Implications for Development of Macrophage Modulating Therapies. International journal of molecular sciences, 23(15), 8381. https://doi.org/10.3390/ijms23158381
  18. Ren, W., Xia, Y., Chen, S., Wu, G., Bazer, F. W., Zhou, B., Tan, B., Zhu, G., Deng, J., & Yin, Y. (2019). Glutamine Metabolism in Macrophages: A Novel Target for Obesity/Type 2 Diabetes. Advances in nutrition (Bethesda, Md.), 10(2), 321–330. https://doi.org/10.1093/advances/nmy084
  19. Sag, D., Carling, D., Stout, R. D., & Suttles, J. (2008). Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. Journal of immunology (Baltimore, Md. : 1950), 181(12), 8633–8641. https://doi.org/10.4049/jimmunol.181.12.8633
  20. Saqib, U., Sarkar, S., Suk, K., Mohammad, O., Baig, M. S., & Savai, R. (2018). Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget, 9(25), 17937–17950. https://doi.org/10.18632/oncotarget.24788
  21. Shao, J., Li, J., Weng, L., Cheng, K., Weng, W., Sun, Q., Wu, M., & Lin, J. (2023). Remote Activation of M2 Macrophage Polarization via Magneto-Mechanical Stimulation To Promote Osteointegration. ACS Biomaterials Science & Engineering, 9(5), 2483–2494. https://doi.org/10.1021/acsbiomaterials.3c00080
  22. Sheppe, A. E. F., Kummari, E., Walker, A., Richards, A., Hui, W. W., Lee, J. H., Mangum, L., Borazjani, A., Ross, M. K., & Edelmann, M. J. (2018). PGE2 Augments Inflammasome Activation and M1 Polarization in Macrophages Infected With Salmonella Typhimurium and Yersinia enterocolitica. Frontiers in microbiology, 9, 2447. https://doi.org/10.3389/fmicb.2018.02447
  23. Song, M. Y., Wang, J., Lee, Y., Lee, J., Kwon, K. S., Bae, E. J., & Park, B. H. (2016). Enhanced M2 macrophage polarization in high n-3 polyunsaturated fatty acid transgenic mice fed a high-fat diet. Molecular nutrition & food research, 60(11), 2481–2492. https://doi.org/10.1002/mnfr.201600014
  24. Stunault, M. I., Bories, G., Guinamard, R. R., & Ivanov, S. (2018). Metabolism Plays a Key Role during Macrophage Activation. Mediators of inflammation, 2018, 2426138. https://doi.org/10.1155/2018/2426138
  25. Sun, Y., Zuo, Z., & Kuang, Y. (2020). An Emerging Target in the Battle against Osteoarthritis: Macrophage Polarization. International journal of molecular sciences, 21(22), 8513. https://doi.org/10.3390/ijms21228513
  26. Wang, W., Liu, H., Liu, T., Yang, H., & He, F. (2022). Insights into the Role of Macrophage Polarization in the Pathogenesis of Osteoporosis. Oxidative medicine and cellular longevity, 2022, 2485959. https://doi.org/10.1155/2022/2485959
  27. Wei, Y., Chen, J., Cai, G. E., Lu, W., Xu, W., Wang, R., Lin, Y., & Yang, C. (2021). Rosmarinic Acid Regulates Microglial M1/M2 Polarization via the PDPK1/Akt/HIF Pathway Under Conditions of Neuroinflammation. Inflammation, 44(1), 129–147. https://doi.org/10.1007/s10753-020-01314-w
  28. Williams, J. A., & Shacter, E. (1997). Regulation of macrophage cytokine production by prostaglandin E2. Distinct roles of cyclooxygenase-1 and -2. The Journal of biological chemistry, 272(41), 25693–25699. https://doi.org/10.1074/jbc.272.41.25693
  29. Wolska, J. & Janda-Milczarek, Katarzyna & Szkyrpan, S. & Gutowska, Izabela. (2015). The influence of stinging nettle (Urtica dioica L.) extracts on the activity of catalase in THP1 monocytes/macrophages. 61. 315-318.
  30. Vincent, T. L., McClurg, O., & Troeberg, L. (2022). The Extracellular Matrix of Articular Cartilage Controls the Bioavailability of Pericellular Matrix-Bound Growth Factors to Drive Tissue Homeostasis and Repair. International journal of molecular sciences, 23(11), 6003. https://doi.org/10.3390/ijms23116003
  31. Xia, Y., Chen, S., Zeng, S., Zhao, Y., Zhu, C., Deng, B., Zhu, G., Yin, Y., Wang, W., Hardeland, R., & Ren, W. (2019). Melatonin in macrophage biology: Current understanding and future perspectives. Journal of pineal research, 66(2), e12547. https://doi.org/10.1111/jpi.12547
  32. Xu, M., Wang, X., Li, Y., Geng, X., Jia, X., Zhang, L., & Yang, H. (2021). Arachidonic Acid Metabolism Controls Macrophage Alternative Activation Through Regulating23Oxidative Phosphorylation in PPARγ Dependent Manner. Frontiers in immunology, 12, 618501. https://doi.org/10.3389/fimmu.2021.618501
  33. Yao, Y., Xu, X.-H., & Jin, L. (2019). Macrophage polarization in physiological and pathological pregnancy. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.00792

Knorpelregeneration

  1. Alsalameh S, Amin R, Gemba T, Lotz M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum. 2004;50:1522–1532.
  2. Barbero A, Ploegert S, Heberer M, Martin I. Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes. Arthritis Rheum. 2003;48:1315–1325.
  3. Elsaid KA, Jay GD, Warman ML, Rhee DK, Chichester CO. (2015). Association of articular cartilage degradation and loss of boundary-lubricating ability of synovial fluid following injury and inflammatory arthritis. Arthritis Rheum.52:1746–1755.
  4. Fickert S, Fiedler J, Brenner RE. (2004). Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Res Ther. 2004;6:R422–R432.
  5. Flannery CR, et al. (2009). Prevention of cartilage degeneration in a rat model of osteoarthritis by intraarticular treatment with recombinant lubricin. Arthritis Rheum. 60:840–847
  6. Gleghorn JP, Jones AR, Flannery CR, Bonassar LJ. (2009). Boundary mode lubrication of articular cartilage by recombinant human lubricin. J Orthop Res.27:771–777.
  7. Grogan SP, et al. (2013). Zone-specific gene expression patterns in articular cartilage. Arthritis Rheum. 65:418–428.
  8. Grogan SP, Miyaki S, Asahara H, D’Lima DD, Lotz MK. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther. 2009;11:R85.
  9. Hiraoka K, Grogan S, Olee T, Lotz M. Mesenchymal progenitor cells in adult human articular cartilage. Biorheology. 2006;43:447–454.
  10. Jiang Y, Tong T, Heng B, Ouyang H. (2012).Cartilage injuries: role of implantation of human stem/progenitor cells. In: Hayat MA, editor. Stem Cells and Cancer Stem Cells. Vol. 3. Springer; pp. 327–333.
  11. Jiang, Y. u.a. (2016): Human Cartilage-Derived Progenitor Cells from comitted Chondrocytes for efficient Cartilage Repair and Regeneration. Stem Cells Translational Medicine 5(6):733-744.
  12. Jiang, Y., & Tuan, R. S. (2015). Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nature Reviews. Rheumatology, 11(4), 206–212. http://doi.org/10.1038/nrrheum.2014.200
  13. Koelling S, et al. (2009). Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell. 2009;4:324–335.
  14. Mirzamohammadi, F., Papaioannou, G., & Kobayashi, T. (2014). MicroRNAs in cartilage development, homeostasis, and disease. Current osteoporosis reports, 12(4), 410–419. https://doi.org/10.1007/s11914-014-0229-9
  15. Ohnishi H, et al. (1982). Evidence for “response to injury” hypothesis. Life Sci.31:2595–2602.
  16. Quintin A, et al. (2010).Plasticity of fetal cartilaginous cells. Cell Transplant. 19:1349–1357.
  17. Rhee DK, et al. (2015). The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest.115:622–631.
  18. Schnabel M, et al. (2002). Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage. 2002;10:62– 70.
  19. Seol D, et al. (2012). Chondrogenic progenitor cells respond to cartilage injury. Arthritis Rheum. 2012;64:3626–3637.
  20. Simon C. Mastbergen et al.(2011). „Tissue structure modification in knee osteoarthritis by use of joint distraction: an open 1-year pilot study.“ In: Annals of the Rheumatic Diseases 70 S. 1441-1446.
  21. Simon C. Mastbergen. (2016). „Six weeks of continuous joint distraction appears sufficient for clinical benefit and cartilaginous tissue repair in the treatment of knee osteoarthritis.“ In: The Knee 23 S. 785–791
  22. Waller KA, et al. (2013). Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis. Proc Natl Acad Sci USA.110:5852–5857.
  23. Williams R, et al. (2010). Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS ONE. 5:e13246.

Mesenchymale Stammzellen für Knorpelregeneration

  1. Almalki, S. G., & Agrawal, D. K. (2016). Effects of matrix metalloproteinases on the fate of mesenchymal stem cells. Stem cell research & therapy, 7(1), 129. https://doi.org/10.1186/s13287-016-0393-1
  2. Cho, G.H., Bae, H.C., Cho, W.Y. et al. (2023). High-glutathione mesenchymal stem cells isolated using the FreSHtracer probe enhance cartilage regeneration in a rabbit chondral defect model. Biomater Res 27, 54. https://doi.org/10.1186/s40824-023-00398-3
  3. Choudhery M. S. (2021). Strategies to improve regenerative potential of mesenchymal stem cells. World journal of stem cells, 13(12), 1845–1862. https://doi.org/10.4252/wjsc.v13.i12.1845
  4. Conger, K. (2018). Researchers identify protein essential for making stem cells. Standford Medicine. https://med.stanford.edu/news/all-news/2018/07/researchers-identify-protein-essential-for-making-stem-cells.html
  5. Hilgendorf, K. I., Johnson, C. T., Mezger, A., Rice, S. L., Norris, A. M., Demeter, J., Greenleaf, W. J., Reiter, J. F., Kopinke, D., & Jackson, P. K. (2019). Omega-3 Fatty Acids Activate Ciliary FFAR4 to Control Adipogenesis. Cell, 179(6), 1289–1305.e21. https://doi.org/10.1016/j.cell.2019.11.005
  6. Hou, Q., Dong, Y., Huang, J., Liao, C., Lei, J., Wang, Y., Lai, Y., Bian, Y., He, Y., Sun, J., Sun, M., Jiang, Q., Wang, B., Yu, Z., Guo, Y., & Zhang, B. (2020). Exogenous L-arginine increases intestinal stem cell function through CD90+ stromal cells producing mTORC1-induced Wnt2b. Communications biology, 3(1), 611. https://doi.org/10.1038/s42003-020-01347-9
  7. Huh, J. E., Choi, J. Y., Shin, Y. O., Park, D. S., Kang, J. W., Nam, D., Choi, D. Y., & Lee, J. D. (2014). Arginine enhances osteoblastogenesis and inhibits adipogenesis through the regulation of Wnt and NFATc signaling in human mesenchymal stem cells. International journal of molecular sciences, 15(7), 13010–13029. https://doi.org/10.3390/ijms150713010
  8. Kulesza, A., Paczek, L., & Burdzinska, A. (2023). The Role of COX-2 and PGE2 in the Regulation of Immunomodulation and Other Functions of Mesenchymal Stromal Cells. Biomedicines, 11(2), 445. https://doi.org/10.3390/biomedicines11020445
  9. Lu, C., Li, X. Y., Hu, Y., Rowe, R. G., & Weiss, S. J. (2010). MT1-MMP controls human mesenchymal stem cell trafficking and differentiation. Blood, 115(2), 221–229. https://doi.org/10.1182/blood-2009-06-228494
  10. Lu, D., Xu, Y., Liu, Q., & Zhang, Q. (2021). Mesenchymal Stem Cell-Macrophage Crosstalk and Maintenance of Inflammatory Microenvironment Homeostasis. Frontiers in cell and developmental biology, 9, 681171. https://doi.org/10.3389/fcell.2021.681171
  11. Lu, L. Y., Loi, F., Nathan, K., Lin, T. H., Pajarinen, J., Gibon, E., Nabeshima, A., Cordova, L., Jämsen, E., Yao, Z., & Goodman, S. B. (2017). Pro-inflammatory M1 macrophages promote Osteogenesis by mesenchymal stem cells via the COX-2-prostaglandin E2 pathway. Journal of orthopaedic research : official publication of the Orthopaedic Research Society, 35(11), 2378–2385. https://doi.org/10.1002/jor.23553
  12. Luque-Campos, N., Bustamante-Barrientos, F. A., Pradenas, C., García, C., Araya, M. J., Bohaud, C., Contreras-López, R., Elizondo-Vega, R., Djouad, F., Luz-Crawford, P., & Vega-Letter, A. M. (2021). The Macrophage Response Is Driven by Mesenchymal Stem Cell-Mediated Metabolic Reprogramming. Frontiers in immunology, 12, 624746. https://doi.org/10.3389/fimmu.2021.624746
  13. Mnatsakanyan, H., Sabater I Serra, R., Salmeron-Sanchez, M., & Rico, P. (2019). Zinc Maintains Embryonic Stem Cell Pluripotency and Multilineage Differentiation Potential via AKT Activation. Frontiers in cell and developmental biology, 7, 180. https://doi.org/10.3389/fcell.2019.00180
  14. Ning, K., Liu, S., Yang, B., Wang, R., Man, G., Wang, D. E., & Xu, H. (2022). Update on the effects of energy metabolism in bone marrow mesenchymal stem cells differentiation. Molecular metabolism, 58, 101450. https://doi.org/10.1016/j.molmet.2022.101450
  15. Posa, F., Di Benedetto, A., Cavalcanti-Adam, E. A., Colaianni, G., Porro, C., Trotta, T., Brunetti, G., Lo Muzio, L., Grano, M., & Mori, G. (2018). Vitamin D Promotes MSC Osteogenic Differentiation Stimulating Cell Adhesion and αVβ3 Expression. Stem cells international, 2018, 6958713. https://doi.org/10.1155/2018/6958713
  16. Puca, F., Fedele, M., Rasio, D., & Battista, S. (2022). Role of Diet in Stem and Cancer Stem Cells. International journal of molecular sciences, 23(15), 8108. https://doi.org/10.3390/ijms23158108
  17. Rackwitz, Lars; Pullig, Oliver; Nöth, Ulrich (2020). Arthroseprävention und mögliche zukünftige Ansätze der Arthrosetherapie – Sicht der Orthopädie und Unfallchirurgie. Aktuelle Rheumatologie, (), a-1036-4100–. doi:10.1055/a-1036-410
  18. Zhang, Shuai; Lam, Kargo Kar Ho; Wan, Jack Hei; Yip, Chun Wang; Liu, Harry Kwun-Hung; Lau, Queenie Ming-Ngai; Man, Alice Hei-Yi; Cheung, Chun-Hei; Wong, Lik Hang; Chen, Hu Biao; Shi, Jun; Leung, George Par-Heng; Lee, Calvin Kai-Fai; Shi, Yi-Gang; Tang, Sydney Chi-Wai; Zhang, Kalin Yan Bo (2020). Dietary phytochemical approaches to stem cell regulation. Journal of Functional Foods, 66(), 103822–. doi:10.1016/j.jff.2020.103822 
  19. Zhou, T., Yang, Y., Chen, Q., & Xie, L. (2019). Glutamine Metabolism Is Essential for Stemness of Bone Marrow Mesenchymal Stem Cells and Bone Homeostasis. Stem cells international, 2019, 8928934. https://doi.org/10.1155/2019/8928934

Entzündungssenkende Ernährung

  1. Biesiekierski, J. R et al. (2011): Gluten Causes Gastrointestinal Symptoms in Subjects Without Celiac Disease: A Double­Blind Randomized Placebo­ Controlled Trial. Am J Gastroenterol, 106 (3), 508–514.
  2. Broughton, K. S. et al. (2011): Prostaglandin E2 production in mice is reduced by consumption of range­fed sources of red meat. Nutrition Research, 31(12), 907–914.
  3. Calder, P. C., & Yaqoob, P. (1999): Glutamine and the immune system. Amino Acids, 17(3), 227– 241.
  4. Cordain, L. et al. (2000): Modulation of immune function by dietary lectins in rheumatoid arthritis. British Journal of Nutrition, 83 (03), 207–217.
  5. De­Souza, D. A., & Greene, L. J. (2005): Intestinal permeability and systemic infections in critically ill patients: Effect of glutamine. Critical Care Medicine, 33 (5), 1125–1135. 
  6. Facchini, A. et al. (2011): Sulforaphane protects human chondrocytes against cell death induced by various stimuli. J Cell Physiol, 226(7), 1771– 1779. doi: 10.1002/jcp.22506.
  7. Festa, A. et al. (2000): Chronic Subclinical Inflammation as Part of the Insulin Resistance Syndrome: The Insulin Resistance Atherosclerosis Study (IRAS). Circulation, 102 (1), 42–47.
  8. Forsythe, C. et al (2008): Comparison of Low Fat and Low Carbohydrate Diets on Circulating Fatty Acid Composition and Markers of Inflammation. Lipids, 43 (1), 65–77.
  9. Galvao, R. et al. (2012): Effects of different degrees of insulin sensitivity on endothelial function in obese patients. Arq Bras Cardiol, 98 (1), 45–51.
  10. Guadagni, M., & Biolo, G. (2009): Effects of inflammation and/or inactivity on the need for dietary protein. Current Opinion in Clinical Nutrition & Metabolic Care, 12 (6), 617–622.
  11. Guarner, F., & Malagelada, J.­R. (2003): Gut flora in health and disease. The Lancet, 361(9356), 512– 519.
  12. Kim, J. Y. et al. (2012): Sulforaphane suppresses vascular adhesion molecule­1 expression in TNF­alpha­ stimulated mouse vascular smooth muscle cells: Involvement of the MAPK, NF­kappaB and AP­1 signaling pathways. Vascul Pharmacol, 56(3–4), 131–141.
  13. Küllenberg de Gaudry, D., Lohner, S., Schmucker, C., Kapp, P., Motschall, E., Hörrlein, S., Röger, C., & Meerpohl, J. J. (2019). Milk A1 β-casein and health-related outcomes in humans: a systematic review. Nutrition reviews, 77(5), 278–306. https://doi.org/10.1093/nutrit/nuy063
  14. Lampert, R. et al. (2008): Decreased heart rate variability is associated with higher levels of inflammation in middle­aged men. American heart journal, 156 (4), 759.
  15. Lev­-Ran, A. (1998): Mitogenic factors accelerate later­age diseases: insulin as a paradigm. Mechanisms of Ageing and Development, 102(1), 95–113
  16. Martínez, B. et al. (2010): Differentiation of Farmed and Wild Turbot (Psetta maxima): Proximate Chemical Composition, Fatty Acid Profile, Trace Minerals and Antimicrobial Resistance of Contaminant Bacteria. Food Science and Technology International, 16 (5), 435–441.
  17. Pellegrina, C. D. et al. (2009): Effects of wheat germ agglutinin on human gastrointestinal epithelium: Insights from an experimental model of immune/epithelial cell interaction. Toxicology and Applied Pharmacology, 237 (2), 146–153.
  18. Peumans, W. J. and Van Damme, E. J. M. (1996): „Prevalence, biological activity and genetic manipulation of lectins in foods.“ Trends in Food Science and Technology 7(4): 132–138.
  19. Prior, Ronald L. (2014). Oxygen radical absorbance capacity (ORAC): New horizons in relating dietary antioxidants/bioactives and health benefits. Journal of Functional Foods, (), S1756464614003971–. doi:10.1016/j.jff.2014.12.018 
  20. Pusztai, A. et al. (1993): Antinutritive effects of wheat-germ agglutinin and other N- acetylglucosamine-specific lectins. British Journal of Nutrition, 70 (01), 313–321.
  21. Rall, L. C. et al. (1996): Protein metabolism in rheumatoid arthritis and aging. Effects of muscle strength training and tumor necrosis factor α. Arthritis & Rheumatism, 39 (7), 1115–1124.
  22. Rule, D. C. et al. (2002): Comparison of muscle fatty acid profiles and cholesterol concentrations of bison, beef cattle, elk, and chicken. Journal of Animal Science, 80 (5), 1202–1211.
  23. Ryva, B., Zhang, K., Asthana, A., Wong, D., Vicioso, Y., & Parameswaran, R. (2019). Wheat Germ Agglutinin as a Potential Therapeutic Agent for Leukemia. Frontiers in oncology, 9, 100. https://doi.org/10.3389/fonc.2019.00100
  24. Weickert, M. O. (2012): What dietary modification best improves insulin sensitivity and why? Clin Endocrinol (Oxf). doi: 10.1111/j.1365­ 2265.2012.04450

Fettsäuren

  1. Adam, O. et al. (1986): Effects of alpha linolenic acid in human diet on linoleic acid metabolism and prostaglandin biosynthesis. J. Lip. Res 27; 421–426.
  2. Adam, O. (1994): Entzündungshemmende Ernährung bei rheumatischen Erkrankungen. Ernährungsumschau 41, 222–225.
  3. Alonso-Castro, A. J., Serrano-Vega, R., Pérez Gutiérrez, S., Isiordia-Espinoza, M. A., & Solorio- Alvarado, C. R. (2022). Myristic acid reduces skin inflammation and nociception. Journal of food biochemistry, 46(1), e14013. https://doi.org/10.1111/jfbc.14013
  4. Blok, W. et al. (1996): Modulation of Inflammation and Cytokine Production by Dietary (n­3) Fatty Acids. Critical Review.J.Nutr. 126: 1515–1533.
  5. Buey, Berta, Ana Forcén, Laura Grasa, Elena Layunta, Jose Emilio Mesonero, and Eva Latorre. 2023. „Gut Microbiota-Derived Short-Chain Fatty Acids: Novel Regulators of Intestinal Serotonin Transporter“ Life 13, no. 5: 1085. https://doi.org/10.3390/life13051085
  6. Calder, P. C. & Zurier, R. B. (2001): Polyunsaturated fatty acids and rheumatoid arthritis. Current Opinion in Clinical Nutrition & Metabolic Care, 4(2), 115–121.
  7. Chimhashu, T., Malan, L., Baumgartner, J., van Jaarsveld, P. J., Galetti, V., Moretti, D., Smuts, C. M., & Zimmermann, M. B. (2018). Sensitivity of fatty acid desaturation and elongation to plasma zinc concentration: a randomised controlled trial in Beninese children. The British journal of nutrition, 119(6), 610–619. https://doi.org/10.1017/S000711451700366X
  8. Harper, C. R., Edwards, M. J., DeFilippis, A. P., & Jacobson, T. A. (2006). Flaxseed oil increases the plasma concentrations of cardioprotective (n-3) fatty acids in humans. The Journal of nutrition, 136(1), 83–87. https://doi.org/10.1093/jn/136.1.83
  9. Henry, G. E., Momin, R. A., Nair, M. G., & Dewitt, D. L. (2002). Antioxidant and cyclooxygenase activities of fatty acids found in food. Journal of agricultural and food chemistry, 50(8), 2231– 2234. https://doi.org/10.1021/jf0114381
  10. Hesslink, R., Jr, Armstrong, D., 3rd, Nagendran, M. V., Sreevatsan, S., & Barathur, R. (2002). Cetylated fatty acids improve knee function in patients with osteoarthritis. The Journal of rheumatology, 29(8), 1708–1712.
  11. James, M.J., Cleland L.G. (1996): Eicosanoids and cytokines in inflammation – effects of dietary fatty acids. International Conference on highly unsatturated fatty acids in nutrition and disease prevention. Barcelona November 1996.
  12. Lordan, R., & Zabetakis, I. (2017). Invited review: The anti-inflammatory properties of dairy lipids. Journal of dairy science, 100(6), 4197–4212. https://doi.org/10.3168/jds.2016-12224
  13. Kalogeropoulos, N. et al. (2010): Unsaturated fatty acids are inversely associated and n­6/n­3 ratios are positively related to inflammation and coagulation markers in plasma of apparently healthy adults. Clinica Chimica Acta, 411(7–8), 584–591.
  14. Kim, K. B. et al. (2014). α-Linolenic acid: nutraceutical, pharmacological and toxicological evaluation. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 70, 163–178. https://doi.org/10.1016/j.fct.2014.05.009
  15. Konopelski, P., & Mogilnicka, I. (2022). Biological Effects of Indole-3-Propionic Acid, a Gut Microbiota- Derived Metabolite, and Its Precursor Tryptophan in Mammals‘ Health and Disease. International journal of molecular sciences, 23(3), 1222. https://doi.org/10.3390/ijms23031222
  16. Kremer, J.M. et al. (1985): Effects of manipulation of dietary fatty acids on clinical manifestations of rheumatoid arthritis. Lancet, 184–187.
  17. Levin, G., Duffin, K. L., Obukowicz, M. G., Hummert, S. L., Fujiwara, H., Needleman, P., & Raz, A. (2002). Differential metabolism of dihomo-gamma-linolenic acid and arachidonic acid by cyclo-oxygenase-1 and cyclo-oxygenase-2: implications for cellular synthesis of prostaglandin E1 and prostaglandin E2. The Biochemical journal, 365(Pt 2), 489–496. https://doi.org/10.1042/BJ20011798
  18. Mnatsakanyan, H., Sabater I Serra, R., Salmeron-Sanchez, M., & Rico, P. (2019). Zinc Maintains Embryonic Stem Cell Pluripotency and Multilineage Differentiation Potential via AKT Activation. Frontiers in cell and developmental biology, 7, 180. https://doi.org/10.3389/fcell.2019.00180
  19. Morshedzadeh, N et al. (2019). Effects of flaxseed and flaxseed oil supplement on serum levels of inflammatory markers, metabolic parameters and severity of disease in patients with ulcerative colitis. Complementary therapies in medicine, 46, 36–43. https://doi.org/10.1016/j.ctim.2019.07.012
  20. Prasath, K. G., Alexpandi, R., Parasuraman, R., Pavithra, M., Ravi, A. V., & Pandian, S. K. (2021). Anti- inflammatory potential of myristic acid and palmitic acid synergism against systemic candidiasis in Danio rerio (Zebrafish). Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 133, 111043. https://doi.org/10.1016/j.biopha.2020.111043
  21. Pipoyan, D., Stepanyan, S., Stepanyan, S., Beglaryan, M., Costantini, L., Molinari, R., & Merendino, N. (2021). The Effect of Trans Fatty Acids on Human Health: Regulation and Consumption Patterns. Foods (Basel, Switzerland), 10(10), 2452. https://doi.org/10.3390/foods10102452
  22. Prasad, P., Anjali, P., & Sreedhar, R. V. (2021). Plant-based stearidonic acid as sustainable source of omega-3 fatty acid with functional outcomes on human health. Critical reviews in food science and nutrition, 61(10), 1725–1737. https://doi.org/10.1080/10408398.2020.1765137
  23. Raygan, F. et al. (2019). A comparison between the effects of flaxseed oil and fish oil supplementation on cardiovascular health in type 2 diabetic patients with coronary heart disease: A randomized, double-blinded, placebo-controlled trial. Phytotherapy research : PTR, 33(7), 1943–1951. https://doi.org/10.1002/ptr.6393
  24. Reed S, Qin X, Ran-Ressler R, Brenna JT, Glahn RP, Tako E. Dietary Zinc Deficiency Affects Blood Linoleic Acid: Dihomo-γ-linolenic Acid (LA:DGLA) Ratio; a Sensitive Physiological Marker of Zinc Status in Vivo (Gallus gallus). Nutrients. 2014; 6(3):1164-1180. https://doi.org/10.3390/nu6031164
  25. Rösler, D. et al. (2020). Enzyminduktion der Delta-6-Desaturase zur Optimierung der EPA- und DHA- Konversion. OM & Ernährung, 170, 46-51.
  26. Song, C. et al. (2003): Effects of dietary n­3 or n­6 fatty acids on interleukin­1β­induced anxiety, stress, and inflammatory responses in rats. Journal of Lipid Research, 44(10), 1984–1991. 
  27. Xiao, B. et al. (2022). Eicosapentaenoic acid (EPA) exhibits antioxidant activity via mitochondrial modulation. Food chemistry, 373(Pt A), 131389. https://doi.org/10.1016/j.foodchem.2021.131389

Aminosäuren

  1. Di Padova C. (1987). SAMe in the treatment of osteoarthritis. Review of the clinical studies, AM J. Med., 83(5A):60-5.
  2. Ji, J., Xu, Y., Zheng, M., Luo, C., Lei, H., Qu, H., & Shu, D. (2019). Methionine Attenuates Lipopolysaccharide-Induced Inflammatory Responses via DNA Methylation in Macrophages. ACS omega, 4(1), 2331–2336. https://doi.org/10.1021/acsomega.8b03571
  3. Konig B. (1987). A long term (two years) clinical trial with SAMe for the treatment of osteoarthritis, AM J. Med; 83(5A):89-94. 
  4. Maccagno A. et al. (1987). Double-blind controlled clinical trial of oral SAMe versus piroxicam in knee osteoarthritis, AM J. Med; 83(5A): 66-71.
  5. Sutjiati, E., Kusworini, Wirjatmadi, B., & Kalim, H. (2018). Effect of low methionine formula on levels of il-1β serum and il-1β gene expression in knee joint cartilage tissues of normal rabbits and ACL induction OA models. Indian Journal of Public Health Research & Development, 9(10), 549. https://doi.org/10.5958/0976-5506.2018.01403.1

Kollagenhydrolysat

  1. Adam, M. (1991): Welche Wirkung haben Gelatinepräparate; Therapiewoche 41, 2456–2461.
  2. Alcock, R. D., Shaw, G. C., Tee, N., & Burke, L. M. (2019). Plasma amino acid concentrations after the ingestion of dairy and collagen proteins, in healthy active males. Frontiers in Nutrition, 6. https://doi.org/10.3389/fnut.2019.00163
  3. Clark, K. L., Sebastianelli, W., Flechsenhar, K. R., Aukermann, D. F., Meza, F., Millard, R. L., Deitch, J. R., Sherbondy, P. S., & Albert, A. (2008). 24-week study on the use of collagen hydrolysate as a dietary supplement in athletes with activity-related joint pain. Current Medical Research and Opinion, 24(5), 1485–1496. https://doi.org/10.1185/030079908×291967
  4. Clifford, T., Ventress, M., Allerton, D. M., Stansfield, S., Tang, J. C., Fraser, W. D., Vanhoecke, B., Prawitt, J., & Stevenson, E. (2019). The effects of collagen peptides on muscle damage, inflammation and bone turnover following exercise: A randomized, controlled trial. Amino Acids, 51(4), 691–704. https://doi.org/10.1007/s00726-019-02706-5
  5. Dar, Q.-A., Schott, E. M., Catheline, S. E., Maynard, R. D., Liu, Z., Kamal, F., Farnsworth, C. W., Ketz, J. P., Mooney, R. A., Hilton, M. J., Jonason, J. H., Prawitt, J., & Zuscik, M. J. (2017). Daily oral consumption of hydrolyzed type 1 collagen is chondroprotective and anti-inflammatory in murine posttraumatic osteoarthritis. PLOS ONE, 12(4). https://doi.org/10.1371/journal.pone.0174705
  6. Gupta, R. C., Canerdy, T. D., Skaggs, P., Stocker, A., Zyrkowski, G., Burke, R., Wegford, K., Goad, J. T., Rohde, K., Barnett, D., DeWees, W., Bagchi, M., & Bagchi, D. (2009). Therapeutic efficacy of undenatured type-II collagen (UC-II) in comparison to glucosamine and chondroitin in arthritic horses. Journal of veterinary pharmacology and therapeutics, 32(6), 577–584. https://doi.org/10.1111/j.1365-2885.2009.01079.x
  7. Jiang J.X. et al., 2014. Collagen peptides improve knee osteoarthritis in elderly women: A 6-month randomized, double-blind, placebo-controlled study. Agro FOOD Industry Hi Tech, 25:19-23
  8. Kleinnijenhuis, A. J., van Holthoon, F. L., Maathuis, A. J. H., Vanhoecke, B., Prawitt, J., Wauquier, F., & Wittrant, Y. (2019). Non-targeted and targeted analysis of collagen hydrolysates during the course of digestion and absorption. Analytical and Bioanalytical Chemistry, 412(4), 973–982. https://doi.org/10.1007/s00216-019-02323-x
  9. König, D., Oesser, S., Scharla, S., Zdzieblik, D., & Gollhofer, A. (2018). Specific collagen peptides improve bone mineral density and bone markers in postmenopausal women—a randomized controlled study. Nutrients, 10(1), 97. https://doi.org/10.3390/nu10010097
  10. Moskowitz, R. W. (2000): Role of collagen hydrolysate in bone and joint­disease. Seminars in arthritis and Rheumatism 30; 87–99
  11. NAGAOKA, I., NABESHIMA, K. U., MURAKAMI, S., YAMAMOTO, T., WATANABE, K., TOMONAGA, A. K., & YAMAGUCHI, H. (2010). Evaluation of the effects of a supplementary diet containing chicken comb extract on symptoms and cartilage metabolism in patients with knee osteoarthritis. Experimental and Therapeutic Medicine, 1(5), 817–827. https://doi.org/10.3892/etm.2010.114
  12. Oesser, S. et al. (1999): Oral administration of 14 C labeled gelatin hydrolysate leads to accumulation of radioactivity in cartilage of mice (C57/BL). J Nutr 129: 1891–1895.
  13. Oesser, S. et al. (2003): Stimulation of type II collagen biosynthesis and secretion in bovine chondrocytes cultured with degraded collagen. Cell Tiss Res 311: 393–399
  14. Paul, C., Leser, S., & Oesser, S. (2019). Significant amounts of functional collagen peptides can be incorporated in the diet while maintaining indispensable amino acid balance. Nutrients, 11(5), 1079. https://doi.org/10.3390/nu11051079
  15. Rippe, J. et al. (2006): The effectiveness of collagen hydrolysate supplementation treatment in individuals with symptoms of mild osteoarthritis; Vortrag auf dem Deutschen Kongress für Orthopädie und Unfallchirurgie 2006.
  16. Schauss, A. G., Stenehjem, J., Park, J., Endres, J. R., & Clewell, A. (2012). Effect of the novel low molecular weight hydrolyzed chicken sternal cartilage extract, biocell collagen, on improving osteoarthritis-related symptoms: A randomized, double-blind, placebo-controlled trial. Journal of Agricultural and Food Chemistry, 60(16), 4096–4101. https://doi.org/10.1021/jf205295u
  17. Skov, K., Oxfeldt, M., Thøgersen, R., Hansen, M., & Bertram, H. C. (2019). Enzymatic hydrolysis of a collagen hydrolysate enhances postprandial absorption rate—a randomized controlled trial. Nutrients, 11(5), 1064. https://doi.org/10.3390/nu11051064
  18. Weh, L. (2001): Changes in the properties of tissue through the administration of gelatine: extracta orthopaedica 4; 12–16.
  19. Zuckley, L. et al. (2004). Collagen Hydrolysate Improves Joint Function in Adults with Mild Symptoms of Osteoarthritis of the Knee. Medicine & Science in Sports & Exercise, 36(5), 153–154.

Hyaluronsäure

  1. Jensen, G. S., Attridge, V. L., Lenninger, M. R., & Benson, K. F. (2015). Oral intake of a liquid high-molecular-weight hyaluronan associated with relief of chronic pain and reduced use of pain medication: Results of a randomized, placebo-controlled double-blind pilot study. Journal of Medicinal Food, 18(1), 95–101. https://doi.org/10.1089/jmf.2013.0174
  2. Nelson, F. R., Zvirbulis, R. A., Zonca, B., Li, K. W., Turner, S. M., Pasierb, M., Wilton, P., Martinez-Puig, D., & Wu, W. (2014). The effects of an oral preparation containing hyaluronic acid (Oralvisc®) on obese knee osteoarthritis patients determined by pain, function, bradykinin, leptin, inflammatory cytokines, and heavy water analyses. Rheumatology International, 35(1), 43–52. https://doi.org/10.1007/s00296-014-3047-6
  3. Sánchez, J., Bonet, M. L., Keijer, J., van Schothorst, E. M., Mölller, I., Chetrit, C., Martinez-Puig, D., & Palou, A. (2014). Blood cells transcriptomics as source of potential biomarkers of articular health improvement: Effects of oral intake of a rooster combs extract rich in hyaluronic acid. Genes & Nutrition, 9(5). https://doi.org/10.1007/s12263-014-0417-3
  4. Tashiro, T., Seino, S., Sato, T., Matsuoka, R., Masuda, Y., & Fukui, N. (2012). Oral administration of polymer hyaluronic acid alleviates symptoms of knee osteoarthritis: A double-blind, placebo-controlled study over a 12-month period. The Scientific World Journal, 2012, 1–8. https://doi.org/10.1100/2012/167928
  5. Glucosamin und Chondroitin
  6. Bruyere, O. et al. (2004): Glucosamine sulfate reduces osteoarthritis progression in postmenopausal woman with knee osteoarthritis: evidence from two 3­year studies. Menopause, 11 (2), 138–143.
  7. Christgau, S. et al. (2004): Osteoarthritic patients with high cartilage turnover show increased responsiveness to the cartilage protecting effects of glucosamine sulphate. Clin Exp Rheumatol; 22(1):36–42.
  8. Clegg, D.O. et al. (2005): The efficacy of glucosamine and chondroitin sulfate in patients with painful knee osteoarthritis: The Glucosamine/chondroitin Arthritis Intervention Trial (GAIT). Annual Scientific Meeting of the American College of Rheumatology, San Diego (CA), November 12–17, 2005.
  9. Clegg, D. et al. (2006). Glucosamine, Chondroitin Sulfate, and the Two in Combination for Painful Knee Osteoarthritis. New England Journal of Medicine, 354 (8), 795–808.
  10. Conrozier, T., & Lohse, T. (2022). Glucosamine as a Treatment for Osteoarthritis: What If It’s True?. Frontiers in pharmacology, 13, 820971. https://doi.org/10.3389/fphar.2022.820971
  11. Das, A., Hammad, T. (2000): Efficacy of a combination of glucosamine hyrdrochloride, low molecular weight sodium chondroitin sulfate and manganese ascorbate in the management of knee osteoarthritis. Osteoarthritis Cartilage, 24 (8): 343–50.
  12. Deal, D., Moskowitz, R. (1999): Nutraceuticals as therapeutic agents in osteoarthritis. The role of glucosamine, chondroitin sulphate and collagen hydrolysate. Rheumatic Disease Clinics of North America, Vol. 25, Nr. 2; 379–394.
  13. Jerosch J. (2011). Effects of Glucosamine and Chondroitin Sulfate on Cartilage Metabolism in OA: Outlook on Other Nutrient Partners Especially Omega-3 Fatty Acids. International journal of rheumatology, 2011, 969012. https://doi.org/10.1155/2011/969012
  14. Kahan, A. et al. (2009): Long term effect of chondroitins 2 and 6 sulfat on knee osteoarthritis: radomized, double blind, placebo­controlled trial, Arthritis Rheum; 60(2): 254–33.
  15. Leeb, B. et al. (1996): Results of a multicenter study of chondroitin­sulfate use in arthroses of the finger, knee and hip joints. Wien Med. Wochenschr., 146 (24), 609–14.
  16. Lukas, M. W. u.a. (2011): Chondroitinsulfate reduces both cartilage volume loss and bone marrow lesions in knee osteoarthritis patients starting as early as 6 months after initiation of therapy: a randomised, double­blind, placebo­controlled pilot study using MRI. Ann Rheum Dis.; 70: 982­989.
  17. Moskowitz, R.W., Williams, H.J. (2006): Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. GAIT­Study. In: New Engl J Med. 354, Nr. 8, 795–808.
  18. Pavelka, K. et al. (2002): Glucosamine sulfate use and delay of progression of knee osteoarthritis. A 3 year, randomized, placebo­controlled, double­blind study. Arch Intern Med, 162 (18): 2113–23.
  19. Qiu, G.X. et al. (1998): Efficacy and safety of glucosamine sulfate versus ibuprofen in patients with knee osteoarthritis. Arzneimittelforschung 48(5): 469–74.
  20. Reginster J. Y. et al. (2001): Long­term effects of glucosamine sulphate on osteoarthritis progression. Lancet, 357, 251–256.
  21. Richy, F. et al. (2003): Structural and symptomatic efficacy of glucosamine and chondroitin in knee osteoarthritis. A comprehensive meta­analysis. Arch. Intern Med. 14, 163 (13), 1514–1522.
  22. Setnikar, I., Giachetti, C., & Zanolo, G. (1984). Absorption, distribution and excretion of radioactivity after a single intravenous or oral administration of [14C] glucosamine to the rat. Pharmatherapeutica, 3(8), 538–550.
  23. Setnikar, I., & Rovati, L. C. (2001). Absorption, distribution, metabolism and excretion of glucosamine sulfate. A review. Arzneimittel-Forschung, 51(9), 699–725. https://doi.org/10.1055/s-0031-1300105
  24. Shankland, W.E. (1998): The effects of glucosamine and chondroitin sulfate on osteoarthritis of the TMJ: a preliminary report of 50 patients. Cranio;16(4):230–5.
  25. Übelhardt, D. et al. (2004): Intermittent treatment of knee osteoarthritis with oral chondroitin sulphate: a one­year randomized, double­blind multicenter study versus placebo. Osteoarthritis Cartilage, 12 (4), 269–276.
  26. Verbruggen, G. et al. (2002): Systems to assess the progression of finger joint osteoarthritis and the effects of disease modifying osteoarthritis drugs. Clin Rheumatol;21(3):231–43.
  27. Wildi, L. M. et al. (2011): Chondroitin sulphate reduces both cartilage volume loss and bone marrow lesions in knee osteoarthritis patients starting as early as 6 months after initiation of therapy: a randomised, double­blind, placebo­controlled pilot study using MRI. Annals of the Rheumatic Diseases. doi: 10.1136/ard.2010.140848
  28. Zhu, X., Sang, L., Wu, D., Rong, J., & Jiang, L. (2018). Effectiveness and safety of glucosamine and chondroitin for the treatment of osteoarthritis: A meta-analysis of randomized controlled trials. Journal of Orthopaedic Surgery and Research, 13(1). https://doi.org/10.1186/s13018-018-0871-5

Ackerschachtelhalm und Brennnessel

  1. Aguayo-Morales H, Sierra-Rivera CA, Claudio-Rizo JA, Cobos-Puc LE. (2023). Horsetail (Equisetum hyemale) Extract Accelerates Wound Healing in Diabetic Rats by Modulating IL-10 and MCP-1 Release and Collagen Synthesis. Pharmaceuticals. 16(4):514. https://doi.org/10.3390/ph16040514
  2. Carlisle, E. (1982): A silicon requirement for normal growth of cartilage in culture. Fed. Proc. 41, 461.
  3. Carlisle, E. (1988): Silicium (Anmerkung: = Zentralatom von Kieselsäure) als essentielles Spurenelement. VitaMinSpur 3,3, 125 bis 132. 
  4. Grotheer, V., Goergens, M., Fuchs, P. C., Dunda, S., Pallua, N., Windolf, J., & Suschek, C. V. (2013). The performance of an orthosilicic acid-releasing silica gel fiber fleece in wound healing. Biomaterials, 34(30), 7314–7327. https://doi.org/10.1016/j.biomaterials.2013.06.012
  5. Gründemann, C., Lengen, K., Sauer, B., Garcia-Käufer, M., Zehl, M., & Huber, R. (2014). Equisetum arvense (common horsetail) modulates the function of inflammatory immunocompetent cells. BMC complementary and alternative medicine, 14, 283. https://doi.org/10.1186/1472- 6882-14-283
  6. Klingelhöfer, S, u.a. (1999): Antirheumatic effect of IDS 23, a stinging nettle leaf extract, on in vitro expression of T helper cytokines. J Rheumatol. 26(12):2517-22. 
  7. Schulze-Tanzil, G. u.a. (2002): Effects of the antirheumatic remedy hox alpha–a new stinging nettle leaf extract–on matrix metalloproteinases in human chondrocytes in vitro. Histol Histopathol. 17(2):477-85. 
  8. Randall, C. u.a. (2000): Randomized controlled trial of nettle sting for treatment of base-of-thumb- pain. J R Soc Med; 93; 305-09
  9. Konrad, A. u.a. (2005): Ameliorative effect of IDS 30, a stinging nettle leaf extract, on chronic colitis International Journal of Colorectal Disease, 20,1, 9-17. 
  10. van Wyk, E.B. u.a. (2004): Handbuch der Arzneipflanzen, 2. Auflage, Wiss. Verlagsges. Stuttgart. 
  11. Fintelmann, V.; Weiss, R. (2006): Lehrbuch der Phytotherapie. 11. Auflage, Hippokrates Verlag.

Kräuter, Gewürze, Pflanzenstoffe

  1. Abraham, K., Pfister, M., Wöhrlin, F., & Lampen, A. (2011). Relative bioavailability of coumarin from cinnamon and cinnamon-containing foods compared to isolated coumarin: a four-way crossover study in human volunteers. Molecular nutrition & food research, 55(4), 644–653. https://doi.org/10.1002/mnfr.201000394
  2. Aggarwal, B.B., Shishodia, S. (2004): Suppression of the nuclear factor kappaB activation pathway by spice­-derived phytochemicals: reasoning for seasoning. Ann. N. Y. Acad. Sci. 1030, 434–441.
  3. Ahmed, S. (2010): Green tea polyphenol epigallocatechin 3­gallate in arthritis: progress and promise. Arthritis Research & Therapy, 12 (2), 208.
  4. Ammon HPT, Mack T, Singh GB, Safayhi H. (1991). Inhibition of leukotriene B4 formation in rat peritoneal neutrophils by an ethanolic extract of the gum resin exudate of Boswellia serrata. Planta Medica;57:203-207
  5. Altmann, R.D., Marcussen, K.C. (2001): Effects of Ginger extract on knee pain in patients with osteoarthritis. Arthritis Rheum.44(11):2531–2538. ‑ Altern, J. (2005): Ginger extract components suppress induction of chemokine expression in human synoviocytes. Complement Med.; 11; (1); 149–154.
  6. Bannoa N, Akihisa T, Yasukawa K et al. (2006). Anti-inflammatory activities of the triterpene acids from the resin of Boswellia carteri. Journal of Ethnopharmacology. 107:249-253
  7. Belcaro, G. et al. (2008): Variations in C­reactive protein, plasma free radicals and fibrinogen values in patients with osteoarthritis treated with Pycnogenol. Redox Report, 13, 271–276.
  8. Beliveau, R., Gingras, D. (2009): Krebszellen mögen keine Himbeeren, Kösel-Verlag.
  9. Cameron M, Chrubasik S. (2015). Oral herbal therapies for treating osteoarthritis. Cochrane Database of Systematic Reviews.5:CD002947, doi: 10.1002/14651858.CD002947.pub2
  10. Caterina, M.J. et al. (1997): The capsaicin receptor: a heat­activated ion channel in the pain pathway. Nature 389: 816–824.
  11. Chainani­-Wu, N. (2003): Safety and anti-inflammatory activity of curcumin: A component of turmeric (curcuma longa), Journal of Alternativ Complementary medicine;9/1:161–168.
  12. Chen, J. S. et al. (2012): Ginkgo biloba extract reduces high­glucose­induced endothelial adhesion by inhibiting the redox­dependent interleukin­6 pathways. Cardiovasc Diabetol, 11 (1), 49.
  13. Chrubasik, S. et al. (2003): The quality of clinical trials with Harpagophytum procumbens. Phytomedicine 2003;10, 613–623.
  14. Chrubasik, S., Model, A., Black, A., & Pollak, S. (2003). A randomized double-blind pilot study comparing Doloteffin and Vioxx in the treatment of low back pain. Rheumatology (Oxford, England), 42(1), 141–148. https://doi.org/10.1093/rheumatology/keg053
  15. Chrubasik, S. et al. (2006): Evidence of effectiveness for rose hip and seed: A systematic review. Phytotherapy Research; 20: 1–3.
  16. Chun, O. K. et al. (2008): Serum C­Reactive Protein Concentrations Are Inversely Associated with Dietary Flavonoid Intake in U.S. Adults. J. Nutr., 138 (4), 753–760.
  17. Frucht-­Pery, J. et al. (1997):The use of capsaicin in herpes zoster ophathalmicus neuralgia. Acta Opthalmol Scand;5:311–13.
  18. Funk, J. et al. (2006): Efficacy and mechanism of action of turmeric supplements in the treatment of experimental arthritis. Arthritis and rheumatism; 54(11):3452–64.
  19. Grzanna, R. et al. (2005): Ginger – an herbal medicinal product with broad anti-inflammatory actions. J Med Food; 8 (2): 125–32.
  20. Huh, M.K. (2015). INHIBITORY EFFECT OF LIPOXYGENASE AND DPPH RADICAL SCAVENING ACTIVITY OF FRAXINUS RHYNCHOPHYLLA.
  21. Jackson, J K ; Higo, T ; Hunter, W L ; Burt, H M (2006): The antioxidants curcumin and quercetin inhibit inflammatory processes associated with arthritis. 
  22. Javadi, F., Ahmadzadeh, A., Eghtesadi, S., Aryaeian, N., Zabihiyeganeh, M., Rahimi Foroushani, A., & Jazayeri, S. (2017). The Effect of Quercetin on Inflammatory Factors and Clinical Symptoms in Women with Rheumatoid Arthritis: A Double-Blind, Randomized Controlled Trial. Journal of the American College of Nutrition, 36(1), 9–15. https://doi.org/10.1080/07315724.2016.1140093
  23. Jenett-Siems, K. (2019, December 18). Das Potenzial von Weihrauch. DAZ.online. https://www.deutsche-apotheker-zeitung.de/daz-az/2019/daz-51-2019/das-potenzial-von-weihrauch
  24. Joe, B. et al. (1997): Presence of an acidic glycoprotein in the serum of arthritic rats: Modulation by capsaicin and curcumin. Molecular and Cellular Biochemistry 169: 125–134.
  25. Kang, J.Y. et al. (1995): Effect of capsaicin and chilli on ethanol induced gastric mucosal injury in the rat. Gut 36: 664–669.
  26. Kasper, H. (2004): Ernährungsmedizin und Diätetik, 10. Auflage, Urban und Fischer Verlag.
  27. Lev­-Ari, S. et al. (2006): Curcumin synergistically potentiates the growth-­inhibitory and pro­apoptotic effects of celecoxib in osteoarthritis synovial adherent cells. Rheumatology; 4:171–177.
  28. Long, Soeken, Ernst (2001): Herbal medicines for the treatment of osteoarthritis: a systematic review. Rheumatology, 40, 779–793.
  29. Lampe, J.W. (2003): Spicing­up a vegetarian diet: chemopreventive effects for phytochemicals. Am. J. Clin. Nutr. 78, 5795–5835.
  30. Larsen, u.a. (2003): An anti-inflammatory galactolipid from rose hip (Rosa canina L.) inhibits chemotaxis of human peripheral blood neurtrophils in vitro. J Nat Prod. 2003; 66: 994–995. 
  31. Lee, S.K. et al. (2002): Suppressive effect of natural sesquiterpenoids on inducible cyclooxygenase(COX­2) and nitric oxide synthase(iNos) activity in mouse macrophage cells, J Environ Pathol Toxicol Oncol; 21/2:141–148.
  32. Majdalawieh, A. F. & Carr, R. I. (2010): In Vitro Investigation of the Potential Immunomodulatory and Anti­Cancer Activities of Black Pepper (Piper nigrum) and Cardamom (Elettaria cardamomum). Journal of Medicinal Food, 13 (2), 371–381.
  33. Majeed M, Majeed S, Narayanan NK et al. (2019). A pilot, randomized, double-blind, placebo- controlled trial to assess the safety and efficacy of a novel Boswellia serrata extract in the management of osteoarthritis of the knee. Phytotherapy Research;33:1457-1468
  34. Mazumder, A. et al.(1995): Inhibitition of human immunodeficiency virus type­1 integrase by curcumin, Biochem Pharmacol.; 49/8:1165–1170.
  35. Park, J. et al. (2010): Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutrition & Metabolism, 7 (1), 18.
  36. Qin, B. et al. (2009): Cinnamon extract attenuates TNF­alpha­induced Intestinal lipoprotein ApoB48 overproduction by regulating inflammatory, insulin and lipoprotein pathways in enterocytes. Hormone and Metabolic Research. 41:1–7.
  37. Rein, E. et al. (2004): A herbal remedy, Hyben Vital (stand. powder of a subspecies of Rosa canina fruits), reduces pain and improves general well-being in patients with osteoarthritis – a double­blind, placebo­controlled, randomised trial. Phytomedicine;11, 383–391.
  38. Rossnagel, K. et al. (2007): Klinische Wirksamkeit von Hagebuttenpulver bei Patienten mit Arthrose – eine systematische Übersicht. MMW Fortschr Med;149:51–56.
  39. Roy NK, Parama D, Banik K et al. (2019). An Update on Pharmacological Potential of Boswellic Acids against Chronic Diseases. International Journal of Molecular Sciences.;20:4101-4128
  40. Schmid, B., Lüdtke, R., Selbmann, H. K., Kötter, I., Tschirdewahn, B., Schaffner, W., & Heide, L. (2001). Efficacy and tolerability of a standardized willow bark extract in patients with osteoarthritis: randomized placebo-controlled, double blind clinical trial. Phytotherapy research : PTR, 15(4), 344–350. https://doi.org/10.1002/ptr.981
  41. Setty, A. et al. (2005): Herbal medications commonly used in the practice of rheumatology. Mechanisms of action, efficacy and side effects. Seminars in Arthritis and Rheumatism, 34, 6, 773–784.
  42. Shakibaei, M. et al. (2005): Curcumin protects human chondrocytes from IL-1­beta­induced inhibition of collagen type II and beta­1­integrin expression and activation of caspase­3: an immunomorphological study. Ann Anat; 187:487–497.
  43. Sporer, F. u. Chrubasik, S. (1999): Präparate aus der Teufelskralle (Harpagophytum procumbens). Zeitschrift für Phytotherapie; 20, 235–236.
  44. Surh, Y­J. et al. (1998): Chemoprotective properties of some pungent ingredients present in red pepper and ginger. Mutation Research 402: 259–267.
  45. Surh, Y­J. et al. (1995): Chemoprotective effects of capsaicin and diallyl sulfide against mutagenesis or tumorigenesis by vinyl carbamate and N­nitrosodimethylamine. Carcinogenesis vol. 16 no.10: 2467–2471.
  46. Surh, Y.J. et al. (2001): Molecular mechanisms underlying chemopreventive activities of anti- inflammatory phytochemicals: down­regulation of COX­2 and iNOS through suppression of NF­ kappa B activation. Mutation Res. 243–268.
  47. Viuda­Martos, M. et al. (2010): Spices as Functional Foods. Critical Reviews in Food Science and Nutrition, 51(1), 13–28.
  48. Warholm, O. et al. (2003): The effect of a standardized herbal remedy made of a sutype of Rosa canina in patients with osteoarthritis, a double­blind, randomized, placebo­controlled clinical trial. Current Ther Res, 64, 21–31.
  49. Wigler, I. et al. (2003): The effects of Zintona (a ginger extract) on symptomatic gonarthritis. Osteoarthritis Cartilage, 11 (11); 783–9.
  50. Winther, K. et al. (1999): The anti­inflammatory properties of rosehip. Inflammopharmacology 1999; 7: 377–386.
  51. Winther, K. et al. (2004): A powder prepared from seeds and shells of sub-type of rose­hip Rosa canina reduces pain in patients with osteoarthritis of the hand – a doubleblind, placebo­ controlled study. Osteoarthritis Cartilage 12 Suppl 2, 145.
  52. Wei, Y., Chen, J., Cai, GE. et al. (2021). Rosmarinic Acid Regulates Microglial M1/M2 Polarization via the PDPK1/Akt/HIF Pathway Under Conditions of Neuroinflammation. Inflammation 44, 129–147. https://doi.org/10.1007/s10753-020-01314-w

Kakao

  1. Engler, M. B. et al. (2004). Flavonoid­Rich Dark Chocolate Improves Endothelial Function and Increases Plasma Epicatechin Concentrations in Healthy Adults. J Am Coll Nutr, 23(3), 197– 204.
  2. Grassi, D. et al. (2005): Cocoa Reduces Blood Pressure and Insulin Resistance and Improves Endothelium ­Dependent Vasodilation in Hypertensives. Hypertension, 46(2), 398–405.
  3. Jia, L. et al. (2010): Short-term effect of cocoa product consumption on lipid profile: a meta-analysis of randomized controlled trials. Am J Clin Nutr., 92(1), 218–225.
  4. Keen, C. L. et al. (2005). “Cocoa antioxidants and cardiovascular health.” Am J Clin Nutr 81(1): 298S –303. ‑ Kim, J.­E. et al. (2010). Cocoa polyphenols suppress TNF­a­induced vascular endothelial growth factor expression by inhibiting phosphoinositide 3­kinase (PI3K) and mitogen­activated protein kinase kinase­1 (MEK1) activities in mouse epidermal cells. British Journal of Nutrition, 104(07), 957–964.
  5. Lippi, G. et al. (2009). “Dark chocolate: consumption for pleasure or therapy?” Journal of Thrombosis and Thrombolysis 28(4): 482–488.
  6. Mellor, D.D. et al. (2010): High­cocoa polyphenol­rich chocolate improves HDL cholesterol in Type 2 diabetes patients, 27, 11, 1318–1321.
  7. Melzig, M. F. et al. (2000). “In vitro pharmacological activity of the tetrahydroisoquinoline salsolinol present in products from Theobroma cacao L. like cocoa and chocolate.” Journal of Ethnopharmacology 73(1–2): 153–159.
  8. Monagas, M. et al. (2009). Effect of cocoa powder on the modulation of inflammatory biomarkers in patients at high risk of cardiovascular disease. Am J Clin Nutr., 90(5), 1144–1150.
  9. Parker, G. et al. (2006): Mood state effects of chocolate. Journal of Affective Disorders, 92(2–3), 149– 159.
  10. Rouraa, E. et al. (2007): Milk Does Not Affect the Bioavailability of Cocoa Powder Flavonoid in Healthy Human. Journal of Nutrition, Metabolic Diseases and Dietetics, 57(6), 493–498.
  11. Strandberg, T. E. et al. (2008): Chocolate, well­being and health among elderly men.
  12. Taubert, D. et al. (2007): Effects of Low Habitual Cocoa Intake on Blood Pressure and Bioactive Nitric Oxide JAMA, 298:49–60.

Vitamin D

  1. Als, O.S. et al. (1987): Serum concentration of vitamin D metabolites in rheumatoid arthritis. Clinical Rheumatology, 6, 2, 238–243.
  2. Bertone­-Johnson, E.R. et al. (2005): Plasma 25­hydroxyvitamin D and 1,25­dihydroxyvitamin D and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. Aug;14(8):1991–7.
  3. Bischoff-Ferrari, H.A. et al. (2005): Fracture prevention with vitamin D supplementation: a meta­ analysis of randomized controlled trials. JAMA 11;293(18):2257–64.
  4. Bischoff, H.A. et al. (2003):Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. J Bone Miner Res.Feb;18(2):343– 51.
  5. Bischoff-Ferrari, H.A. et al. (2004): Effect of Vitamin D on falls: a meta-­analysis. JAMA. Apr 28;291(16):1999– 2006.
  6. Dietrich, T. et al. (2005): Association between serum concentrations of 25­hydroxyvitamin D and gingival inflammation. Am J Clin Nutr. Sep;82(3):575–80.
  7. Gysemans, C.A. et al. (2005):1,25­Dihydroxyvitamin D3 modulates expression of chemokines and cytokines in pancreatic islets: implications for prevention of diabetes in nonobese diabetic mice. Endocrinology. Apr;146(4):1956–64.
  8. Holick, M.F. (2006): High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc.;81(3):353–73.
  9. Holick, M.F. (2004): Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am J Clin Nutr. Mar;79(3):362–71.
  10. Holick, M.F. (2005): Vitamin D: important for prevention of osteoporosis, cardiovascular heart disease, type 1 diabetes, autoimmune diseases, and some cancers. South Med J. Oct;98(10):1024–7.
  11. Miggiano, G.A., Gagliardi L. (2005): Diet, nutrition, and rheumatoid arthritis. Clin Ter. 156(3):115– 23.
  12. Schleithoff, S.S. et al. (2006): Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double­blind, randomized, placebo­controlled trial. Am. J Clin Nutr. 83, (4), 754–9

Vitamin K

  1. Biesalski, H. K. (1999): Vitamin K (Mena­ und Phyllochinon). In: Biesalski, H K, Fürst, P, Kasper, H, Kluthe, R, Pölert, W, Puchstein, C, Stähelin, H. B. (Hrsg): Ernährungsmedizin. Thieme Verlag, Stuttgart.
  2. Binkley, N. C. et al. (2002): A high phylloquinone intake is required to achieve maximal osteocalcin gamma-­carboxylation. Am J. Clin Nutr 76, 1055–60.
  3. Booth, S.L. et al. (2003): Vitamin K intake and bone mineral density in women and men. Am. J. Clin. Nutr. 77, 512.
  4. Braam, L. A. et al. (2003): Vitamin K1 supplementation retards bone loss in postmenopausal women between 50 and 60 years of age. Calcif Tissue Int 73,21–26.
  5. Chin K. Y. (2020). The Relationship between Vitamin K and Osteoarthritis: A Review of Current Evidence. Nutrients, 12(5), 1208. https://doi.org/10.3390/nu12051208
  6. Harris, J. E. (1995): Interaction of dietary factors with oral anticoagulants: Review and applications. J Am Diet Ass 95, 580–584.
  7. Institut für medizinische Diagnostik Berlin-Potsdam. (2023). Freies Vitamin D – Verbesserte Diagnostik der Vitamin D-Versorgung. imd-berlin. https://www.imd-berlin.de/fachinformationen/diagnostikinformationen/freies-vitamin-d-verbesserte-diagnostik-der-vitamin-d-versorgung
  8. Jakob, F. (2002): Vitamin K und Knochenstoffwechsel. MedReport 26 Nr.5.
  9. Koller, F. (1975): Spinat bei Antikoagulantienbehandlungen. Dtsch med Wschr 100, 570.
  10. Schurgers, L. J. et al. (2001): Role of vitamin K and vitamin K­dependant proteins in vascular calcification. Z. Kardiologie 90, 57–63.
  11. Shea, M. K. et al. (2008): Vitamin K and Vitamin D Status: Associatons with Inflammatory Markers in the Framingham Offspring Study, Am J Epidemiol;167:313–320.
  12. Shearer, M. J. (1995): Vitamin K. Lancet 345, 229–234.
  13. Suttie, J. W. (1992): Vitamin K and human nutrition. J Amer Diet Ass, 585–590.
  14. Vermeer, C. et al. (2003): Potential benefits of increase intakes of Vitamin K for bone and vascular health. Eur. J. Nutr. 43, 325.
  15. Weber, P. (2001): Vitamin K and bone health. Nutrition 17, 880–887.

Bor

  1. Devirian, T.A. u.a. (2003): The physiological effects of dietary boron. Critical Reviews in Food Science and Nutrition, 43, 219-231. 
  2.  Hunt, C.D. (1999): Biochemical effects of physiological amounts of dietary boron. J.Trace. Elem. Exp. Med. 9, 185. 
  3. Newnham, R.E. (1994): Essentiality of boron for healthy bones and joints: Environ. Health Perspect. 102, 83. 
  4. Travers, R.L. (1990): Boron and Arthritis: The Results of a Double-blind Pilot Study Journal of Nutritional & Environmental Medicine, Volume 1, 2 , 127 – 132. 
  5. Hall I.CH. u.a. (1995): Anti-inflammatory activity of amine-carboxyboranes in rodents. Arch Pharm (Weinheim). Jan;328(1):39-44. 
  6. Rajendran K.G. u.a. (1995): The anti-osteoporotic activity of amine-carboxyboranes in rodents Biomed Pharmacother.;49(3):131-40. 
  7. Routray, I., & Ali, S. (2016). Boron Induces Lymphocyte Proliferation and Modulates the Priming Effects of Lipopolysaccharide on Macrophages. PloS one, 11(3), e0150607. https://doi.org/10.1371/journal.pone.0150607

Süßstoffe

  1. Basson, A. R., Rodriguez-Palacios, A., & Cominelli, F. (2021). Artificial Sweeteners: History and New Concepts on Inflammation. Frontiers in nutrition, 8, 746247. https://doi.org/10.3389/fnut.2021.746247
  2. Hasan HM, Alkass SY, de Oliveira DSP. (2023). Impact of Long-Term Cyclamate and Saccharin Consumption on Biochemical Parameters in Healthy Individuals and Type 2 Diabetes Mellitus Patients. Medicina; 59(4):698. https://doi.org/10.3390/medicina59040698
  3. Suez, J. et al. (2022). Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell, 185(18), 3307–3328.e19. https://doi.org/10.1016/j.cell.2022.07.016

Dopamin

  1. Davies, N., Frampton, C., Fuad, M., & Slykerman, R. (2023). The effect of supplementation with milk fat globule membranes on psychological health: A randomized clinical trial in healthy adults with moderate stress. Journal of Functional Foods, 105, 105585. https://doi.org/10.1016/j.jff.2023.105585
  2.  Wang, XQ., Cai, HH., Deng, QW. et al. (2023). Dopamine D2 receptor on CD4+ T cells is protective against inflammatory responses and signs in a mouse model of rheumatoid arthritis. Arthritis Res Ther 25, 87. https://doi.org/10.1186/s13075-023-03071-1

Medikamente

  1. Bonmann, Tobias. (2021). Nichtsteroidale Antirheumatika (NSAR) und Niere: Pathophysiologie von NSAR-induzierten Nierenschäden. Dialyse aktuell. 25. 166-169. 10.1055/a-1324-5426.
  2. Sondergaard, K. B., & Gislason, G. (2017). NSAIDs and cardiac arrest: Non-steroidal anti-inflammatory drug use is associated with increased risk of Out-of-hospital Cardiac Arrest: A nationwide Case-Time-Control study. European heart journal, 38(23), 1788–1789. https://doi.org/10.1093/eurheartj/ehx267

Verklebungen Bindegewebe

  1. Kondrup, F., Gaudreault, N., & Venne, G. (2022). The deep fascia and its role in chronic pain and pathological conditions: A review. Clinical anatomy (New York, N.Y.), 35(5), 649–659. https://doi.org/10.1002/ca.23882
  2. Kumka, M., & Bonar, J. (2012). Fascia: a morphological description and classification system based on a literature review. The Journal of the Canadian Chiropractic Association, 56(3), 179–191.
  3. Schleip, R., & Müller, D. G. (2013). Training principles for fascial connective tissues: scientific foundation and suggested practical applications. Journal of bodywork and movement therapies, 17(1), 103–115. https://doi.org/10.1016/j.jbmt.2012.06.007
  4. Stecco, A., Gesi, M., Stecco, C., & Stern, R. (2013). Fascial components of the myofascial pain syndrome. Current pain and headache reports, 17(8), 352. https://doi.org/10.1007/s11916- 013-0352-9

Bewegung

  1. Chow, L. S., Gerszten, R. E., Taylor, J. M., Pedersen, B. K., van Praag, H., Trappe, S., Febbraio, M. A., Galis, Z. S., Gao, Y., Haus, J. M., Lanza, I. R., Lavie, C. J., Lee, C. H., Lucia, A., Moro, C., Pandey, A., Robbins, J. M., Stanford, K. I., Thackray, A. E., Villeda, S., … Snyder, M. P. (2022). Exerkines in health, resilience and disease. Nature reviews. Endocrinology, 18(5), 273–289. https://doi.org/10.1038/s41574-022-00641-2
  2. Kong, H., Wang, X. Q., & Zhang, X. A. (2022). Exercise for Osteoarthritis: A Literature Review of Pathology and Mechanism. Frontiers in aging neuroscience, 14, 854026. https://doi.org/10.3389/fnagi.2022.854026
  3. Ning, K., Wang, Z., & Zhang, X. A. (2022). Exercise-induced modulation of myokine irisin in bone and cartilage tissue-Positive effects on osteoarthritis: A narrative review. Frontiers in aging neuroscience, 14, 934406. https://doi.org/10.3389/fnagi.2022.934406
  4. Palazzo, C., Nguyen, C., Lefevre-Colau, M. M., Rannou, F., & Poiraudeau, S. (2016). Risk factors and burden of osteoarthritis. Annals of physical and rehabilitation medicine, 59(3), 134–138. https://doi.org/10.1016/j.rehab.2016.01.006
  5. Roggio, F., Petrigna, L., Trovato, B., Di Rosa, M., & Musumeci, G. (2023). The Role of Lubricin, Irisin and Exercise in the Prevention and Treatment of Osteoarthritis. International journal of molecular sciences, 24(6), 5126. https://doi.org/10.3390/ijms24065126 
  6. Teirlinck, C. H., Verhagen, A. P., van Ravesteyn, L. M., Reijneveld-van de Vendel, E. A. E., Runhaar, J., van Middelkoop, M., Ferreira, M. L., & Bierma-Zeinstra, S. M. (2023). Effect of exercise therapy in patients with hip osteoarthritis: A systematic review and cumulative meta- analysis. Osteoarthritis and cartilage open, 5(1), 100338. https://doi.org/10.1016/j.ocarto.2023.100338
  7. Thorlund, J. B., Simic, M., Pihl, K., Berthelsen, D. B., Day, R., Koes, B., & Juhl, C. B. (2022). Similar Effects of Exercise Therapy, Nonsteroidal Anti-inflammatory Drugs, and Opioids for Knee Osteoarthritis Pain: A Systematic Review with Network Meta-analysis. The Journal of orthopaedic and sports physical therapy, 52(4), 207–216. https://doi.org/10.2519/jospt.2022.10490
  8. Westcott, Wayne L. PhD. (2012). Resistance Training is Medicine: Effects of Strength Training on Health. Current Sports Medicine Reports 11(4):p 209-216. | DOI: 10.1249/JSR.0b013e31825dabb8
  9. Young, J.J., Pedersen, J.R. & Bricca, A. (2023). Exercise Therapy for Knee and Hip Osteoarthritis: Is There An Ideal Prescription?. Curr Treat Options in Rheum 9, 82–98. https://doi.org/10.1007/s40674-023-00205-z

Epigenetik / Psychische Stärke

  1. Bruce H. Lipton (2021): Intelligente Zellen. Wie Erfahrungen unsere Gene steuern. Koha-Verlag
  2. Chaplin, M. F., (2019) Structure and properties of water in its various states, Encyclopedia of Water: Science, Technology, and Society, Ed. P. A. Maurice, Wiley. https://doi.org/10.1002/9781119300762.wsts0002
  3. Fila, M., Pawlowska, E., Szczepanska, J., & Blasiak, J. (2023). Epigenetic Connections of the TRPA1 Ion Channel in Pain Transmission and Neurogenic Inflammation – a Therapeutic Perspective in Migraine?. Molecular neurobiology, 10.1007/s12035-023-03428-2. Advance online publication. https://doi.org/10.1007/s12035-023-03428-2
  4. Gouin, O., L’Herondelle, K., Lebonvallet, N., Le Gall-Ianotto, C., Sakka, M., Buhé, V., Plée-Gautier, E., Carré, J. L., Lefeuvre, L., Misery, L., & Le Garrec, R. (2017). TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization. Protein & cell, 8(9), 644–661. https://doi.org/10.1007/s13238-017- 0395-5
  5. Hwang, S. G., Lee, H. S., Lee, B. C., & Bahng, G. (2017). Effect of Antioxidant Water on the Bioactivities of Cells. International journal of cell biology, 2017, 1917239. https://doi.org/10.1155/2017/1917239
  6. Langer, Ellen (2009). Counter Clockwise: Mindful Health and the Power of Possibility. New York, Ballantine Books.
  7. Kameda, T., Zvick, J., Vuk, M., Sadowska, A., Tam, W. K., Leung, V. Y., Bölcskei, K., Helyes, Z., Applegate, L. A., Hausmann, O. N., Klasen, J., Krupkova, O., & Wuertz-Kozak, K. (2019). Expression and Activity of TRPA1 and TRPV1 in the Intervertebral Disc: Association with Inflammation and Matrix Remodeling. International journal of molecular sciences, 20(7), 1767. https://doi.org/10.3390/ijms20071767
  8. Kiecolt-Glaser J. K. (2010). Stress, food, and inflammation: psychoneuroimmunology and nutrition at the cutting edge. Psychosomatic medicine, 72(4), 365–369. https://doi.org/10.1097/PSY.0b013e3181dbf489
  9. Mishkind, M., Vermeer, J. E., Darwish, E., & Munnik, T. (2009). Heat stress activates phospholipase D and triggers PIP accumulation at the plasma membrane and nucleus. The Plant journal : for cell and molecular biology, 60(1), 10–21. https://doi.org/10.1111/j.1365-313X.2009.03933.x
  10. Radhakrishnan, A., Mukherjee, T., Mahish, C., Kumar, P. S., Goswami, C., & Chattopadhyay, S. (2023). TRPA1 activation and Hsp90 inhibition synergistically downregulate macrophage activation and inflammatory responses in vitro. BMC immunology, 24(1), 16. https://doi.org/10.1186/s12865-023-00549-0
  11. Sejari, N., Kamaruddin, K., Ramasamy, K., Lim, S. M., Neoh, C. F., & Ming, L. C. (2016). The immediate effect of traditional Malay massage on substance P, inflammatory mediators, pain scale and functional outcome among patients with low back pain: study protocol of a randomised controlled trial. BMC complementary and alternative medicine, 16, 16. https://doi.org/10.1186/s12906-016-0988-1 
  12. Sondag, G. R., & Haqqi, T. M. (2016). The Role of MicroRNAs and Their Targets in Osteoarthritis. Current rheumatology reports, 18(8), 56. https://doi.org/10.1007/s11926-016- 0604-x